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Context

� Block ciphers are vulnerable to SCA.

� d-th order boolean masking is the most implemented.

� Improve security of masking schemes against SCA:

Increase the order d of the masking.

∗ +: Security of dO-masking grows exponentially with d due to
intrinsic leakage noise [ChariJutlaRaoRohatgi99]

∗ –: Efficiency of dO-masking quickly decreases with d

Complicate the relation between the masks and the masked
variable.

⇒ this work
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Shamir’s secret sharing scheme

� a0 secret.

� P is a polynomial s.t.
P(x) = ad · xd + ad−1 · xd−1 + · · ·+ a1 · x + a0

� Each user i has (xi , yi = P(xi ))xi 6=0

� Reconstruction:

a0 =
d∑
0

yi · βi

where βi =
d∏

j=0,j 6=i

−xj

xi − xj
.
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d-th order masking scheme

� Each sensitive variable b is shared as

(xi , yi )i=0..d

� We only manipulate pairs (xi , yi )

� The cipher text c verifies:

c =
d∑
0

yfinal
i · βi

where (xi , y
final
i ) is the output of the last round.



grid

8/26

Introduction Description of the scheme Complexity analysis Security analysis Conclusion

Masking linear layers

� AddRoundKey, ShiftRows, MixColumns computed using linear
operations.

� Let u ∈ GF(256) shared as (xi , ui )i=0..d , v ∈ GF(256)

b ⊕ v → (x ′i , y
′
i ) = (xi , yi ⊕ v)

b ⊕ u → (x ′i , y
′
i ) = (xi , yi ⊕ ui )

b · v → (x ′i , y
′
i ) = (xi , yi · v)
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Masking AES Sbox

� SubByte can be derived from [RivainProuff10] using
x−1 = x254.

� Secure square: linear over GF(256):

b2 → (x ′i , y
′
i ) = (x2i , yi

2)

� x ′i 6= xi ⇒ need a RefreshMasks operation.

� Secure multiplication:
product of 2 degree d polynomials ⇒ polynomial of degree 2d
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RefreshMasks operation

� Derived from [Ben-OrGoldwasserWigderson88]
Sharing each share
Reconstructing original value

Algorithm 1 RefreshMasks

Input: Shared representation of b, (αi , yi )i=0..d , chosen (xi )i=0..d , t

such that αi = x2
t

i

Output: Shared representation of b, (xi , y
′
i )i=0..d

1. for i = 0 to d do
2. β′i ← β2t

i

3. Share yi in (xj , zij )j=0..d

4. for i = 0 to d do

5. (xi , y
′
i )←

xi ,

d∑
j=0

β′j · zji


6. return (xi , y

′
i )i=0..d
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Masking the field multiplication

� Two possibilities:

Adapt SMC algorithm of [Ben-OrGoldwasserWigderson88]1

⇒ huge complexity
Provide a new algorithm exploiting the SCA context

⇒ loss of known security proof

⇒ our choice.

� Idea : truncate the degree 2d polynomial to degree d

1see full version at http://eprint.iacr.org/2011/516.pdf

http://eprint.iacr.org/2011/516.pdf
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Masking the field multiplication

� Let βj ,k (x) be defined as:

βj (x) =
d∏

l=0,l 6=j

x − xl

xj − xl
.

βj (x) · βk (x) = α2dx
2d + · · ·+ αdx

d + · · ·+ α1x + α0

Then βj,k (x) = βk,j (x) = αdx
d + · · ·+ α1x + α0.

� P(x) =
d∑

j=0

d∑
k=0

yj · uk · βj ,k (x) verifies:

degree(P) = d
P(0) = b · u
∀x ∈ {xi}i=0..d , P(xi ) = y ′i
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Masking the field multiplication

Algorithm 2 Share multiplication SecMult

Input: Shared representation of b, (xi , yi )i=0..d and u, (xi , ui )i=0..d

Output: Shares (xi , y
′
i )i=0..d representing the product of b and u

1. for j = 0 to d do
2. for k = 0 to d do
3. zj,k ← yj · uk

4. for i = 0 to d do

5. (xi , y
′
i )←

xi ,

 d∑
j=1

∑
0≤k<j

(zj,k ⊕ zk,j ) · βj,k (xi )

+
d∑

j=0

zj,j · βj,j (xi )


6. return (xi , y

′
i )i=0..d
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Intuition of security

� Intuitively we have

One needs at least d + 1 shares to define a polynomial of
degree d ,
βj,k (xi ) is independent of any secret,
yj · uk does not leak more information on b (resp. u) than the
knowledge of yj (resp. uk ),

� No easy security proof for SecMult a order d : open work.
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Complexity of the inversion

Table: Complexity of inversion algorithms

order XORs multiplications ˆ2j Rand. bytes RAM (bytes)

O1-SSS 36 54 14 6 20
O2-SSS 150 165 21 18 33
Od-SSS 7d3 + 18d2 + 11d 5d3 + 18d2 + 22d + 9 7(d + 1) 3d2 + 3d d2 + 10d + 9

O1-Bool. 20 16 6 6 7
O2-Bool. 56 36 9 16 12
O3-Bool. 108 64 12 20 18
O4-Bool. 176 100 15 48 25
Od-Bool. 7d2 + 12d 4d2 + 8d + 4 3(d + 1) 2d2 + 4d 1

2d
2 + 7

2d + 3
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Overall complexity

� Log/alog tables based multiplication

Table: Complexity of cipher implementations

Masking XORs/ANDs Table look-ups Random bits RAM (bits) ROM (bits)

1O boolean 17640 16144 16896 312 6128

2O boolean 37800 32272 46080 352 6128

3O boolean 65640 54160 87552 400 6128

1O SSS 31760 37296 16240 400 6128
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Leakage model

� Each sensitive variable Z manipulated as

Ui = (xi ,P(xi ))i=0..d

where P(0) = Z

� Hamming weight model with additional Gaussian noise

� No d-th order leakage thanks to Shamir’s sharing scheme

� What about (d + 1)-th order leakage ?



grid

19/26

Introduction Description of the scheme Complexity analysis Security analysis Conclusion

Leakage model

� Each sensitive variable Z manipulated as

Ui = (xi ,P(xi ))i=0..d

where P(0) = Z

� Hamming weight model with additional Gaussian noise

� No d-th order leakage thanks to Shamir’s sharing scheme

� What about (d + 1)-th order leakage ?



grid

19/26

Introduction Description of the scheme Complexity analysis Security analysis Conclusion

Leakage model

� Each sensitive variable Z manipulated as

Ui = (xi ,P(xi ))i=0..d

where P(0) = Z

� Hamming weight model with additional Gaussian noise

� No d-th order leakage thanks to Shamir’s sharing scheme

� What about (d + 1)-th order leakage ?



grid

20/26

Introduction Description of the scheme Complexity analysis Security analysis Conclusion

Information Theoretic Analysis

� Follows the approach of [StandaertMalkingYung09]
Mutual information evaluation

Figure: Mutual Information values with respect to σ2 (logarithmic scale).
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Higher-Order DPA Evaluation

� Optimal correlation [ProuffRivainBévan09]:

ρ =

√
Var

[
E
[∏

i Li |Z = z
]]

Var
[∏

i Li

]
� Boolean masking [RivainProuffDoget09]:

ρbool = (−1)d

√
n

(n + 4σ2)
d+1
2

� 1O-SSS masking:

ρSSS =

√
n3 · (2n+1 − 4n − 1)

α2 · σ4 + α1 · σ2 + α0
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Higher-Order DPA Evaluation

Figure: Correlation values with respect to σ2 (logarithmic scale).
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Attack simulations

Table: Number of leakage measurements for a 90% success rate.

Attack \ SNR +∞ 1 1/2 1/5 1/10

Attacks against Boolean Masking

2O-DPA on 1O Boolean Masking 150 500 1500 6000 20 000

2O-MIA on 1O Boolean Masking 100 5000 15 000 50 000 160 000

3O-DPA on 2O Boolean Masking 1500 9000 35 000 280 000 > 106

3O-MIA on 2O Boolean Masking 160 160 000 650 000 > 106 > 106

Attacks against SSS Masking

2O-DPA on 1O SSS Masking > 106 > 106 > 106 > 106 > 106

2O-MIA on 1O SSS Masking 500 000 > 106 > 106 > 106 > 106

3O-DPA on 2O SSS Masking > 106 > 106 > 106 > 106 > 106

3O-MIA on 2O SSS Masking > 106 > 106 > 106 > 106 > 106
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Conclusion

� New alternative to higher order boolean masking

� Good complexity-security trade-off for high level security:

1O-SSS complexity ≈ 2O boolean
1O-SSS security ≈ 3O boolean

� Open work:

Security proof for SecMult
Try other secret sharing as masking scheme
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End of the talk

Thank you for your attention

Questions / comments ?
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