Introduction 00	Description of the scheme	Complexity analysis 00	Security analysis 0000	Conclusion
www.thalesgroup.com	n			

Protecting AES with Shamir's Secret Sharing Scheme

Louis Goubin and Ange Martinelli

CHES 2011, September 29, Nara Japan

Introduction 00	Description of the scheme	Complexity analysis 00	Security analysis 0000	Conclusion
Outline				

1 Introduction

Context Shamir's secret sharing scheme

2 Description of the scheme

Core Idea Masking AES: SSS masking scheme

3 Complexity analysis

Complexity of operations Overall complexity

4 Security analysis

Information Theoretic Analysis Higher-Order DPA Evaluation Attack simulations

Introduction 00	Description of the scheme	Complexity analysis	Security analysis 0000	Conclusion
Outline				
1 Intro	oduction			

Context Shamir's secret sharing scheme

2 Description of the scheme

Core Idea Masking AES: SSS masking scheme

3 Complexity analysis

Complexity of operations Overall complexity

4 Security analysis

Information Theoretic Analysis Higher-Order DPA Evaluation Attack simulations

Introduction ●○	Description of the scheme	Complexity analysis 00	Security analysis 0000	Conclusion
Context				

- Block ciphers are vulnerable to SCA.
- d-th order boolean masking is the most implemented.
- Improve security of masking schemes against SCA:

Introduction ●○	Description of the scheme	Complexity analysis	Security analysis 0000	Conclusion
Context				

- Block ciphers are vulnerable to SCA.
- *d*-th order boolean masking is the most implemented.
- Improve security of masking schemes against SCA:
 - Increase the order *d* of the masking.
 - * +: Security of dO-masking grows exponentially with d due to intrinsic leakage noise [ChariJutlaRaoRohatgi99]
 - * -: Efficiency of dO-masking quickly decreases with d

Introduction $\bullet \circ$	Description of the scheme	Complexity analysis	Security analysis 0000	Conclusion
Context				

- Block ciphers are vulnerable to SCA.
- d-th order boolean masking is the most implemented.
- Improve security of masking schemes against SCA:
 - Increase the order *d* of the masking.
 - * +: Security of dO-masking grows exponentially with d due to intrinsic leakage noise [ChariJutlaRaoRohatgi99]
 - * -: Efficiency of dO-masking quickly decreases with d
 - Complicate the relation between the masks and the masked variable.

 $\Rightarrow \mathsf{this}\;\mathsf{work}$

Introduction $\circ \bullet$	Description of the scheme	Complexity analysis 00	Security analysis 0000	Conclusion
Shamir's	secret sharing s	cheme		

♦ a₀ secret.

- P is a polynomial s.t. $P(x) = a_d \cdot x^d + a_{d-1} \cdot x^{d-1} + \dots + a_1 \cdot x + a_0$
- Each user *i* has $(x_i, y_i = P(x_i))_{x_i \neq 0}$
- Reconstruction:

$$a_0 = \sum_0^d y_i \cdot \beta_i$$

where
$$\beta_i = \prod_{j=0, j \neq i}^d \frac{-x_j}{x_i - x_j}$$
.

Introduction 00	Description of the scheme	Complexity analysis 00	Security analysis 0000	Conclusion
Outline				

n	tr		1.1		r
	U I	u	u		1

Context Shamir's secret sharing scheme

- 2 Description of the scheme
 - Core Idea Masking AES: SSS masking scheme
- 3 Complexity analysis

Complexity of operations Overall complexity

4 Security analysis

Information Theoretic Analysis Higher-Order DPA Evaluation Attack simulations

Introduction 00	Description of the scheme ●○○○○○○○	Complexity analysis 00	Security analysis	Conclusion
<i>d</i> -th orde	r masking scheme	9		

Each sensitive variable b is shared as

 $(x_i, y_i)_{i=0..d}$

- We only manipulate pairs (x_i, y_i)
- The cipher text *c* verifies:

$$\boldsymbol{c} = \sum_{0}^{d} \boldsymbol{y}_{i}^{\textit{final}} \cdot \boldsymbol{\beta}_{i}$$

where (x_i, y_i^{final}) is the output of the last round.

Introduction 00	Description of the scheme	Complexity analysis 00	Security analysis 0000	Conclusion
Masking	linear layers			

- AddRoundKey, ShiftRows, MixColumns computed using linear operations.
- Let $u \in GF(256)$ shared as $(x_i, u_i)_{i=0..d}$, $v \in GF(256)$

Introduction	Description of the scheme	Complexity analysis	Security analysis	Conclusion
00	○●000000	00	0000	
Masking	linear layers			

- AddRoundKey, ShiftRows, MixColumns computed using linear operations.
- ◆ Let $u \in GF(256)$ shared as $(x_i, u_i)_{i=0..d}$, $v \in GF(256)$ $b \oplus v \rightarrow (x'_i, y'_i) = (x_i, y_i \oplus v)$

Introduction 00	Description of the scheme	Complexity analysis	Security analysis 0000	Conclusion
Masking	linear layers			

- AddRoundKey, ShiftRows, MixColumns computed using linear operations.
- Let $u \in GF(256)$ shared as $(x_i, u_i)_{i=0..d}$, $v \in GF(256)$

$$\begin{array}{l} b \oplus v & \rightarrow (x'_i, y'_i) = (x_i, y_i \oplus v) \\ b \oplus u & \rightarrow (x'_i, y'_i) = (x_i, y_i \oplus u_i) \end{array}$$

Introduction 00	Description of the scheme	Complexity analysis	Security analysis 0000	Conclusion
Masking	linear layers			

AddRoundKey, ShiftRows, MixColumns computed using linear operations.

• Let $u \in GF(256)$ shared as $(x_i, u_i)_{i=0..d}$, $v \in GF(256)$

$$\begin{array}{ll} b \oplus v & \rightarrow (x'_i, y'_i) = (x_i, y_i \oplus v) \\ b \oplus u & \rightarrow (x'_i, y'_i) = (x_i, y_i \oplus u_i) \\ b \cdot v & \rightarrow (x'_i, y'_i) = (x_i, y_i \cdot v) \end{array}$$

Introduction 00	Description of the scheme	Complexity analysis 00	Security analysis 0000	Conclusion
Masking	AES Sbox			

- SubByte can be derived from [RivainProuff10] using x⁻¹ = x²⁵⁴.
- Secure square: linear over GF(256):

$$\mathbf{b}^2 \rightarrow (x'_i, \mathbf{y}'_i) = (x^2_i, \mathbf{y}^2_i)$$

- $x'_i \neq x_i \Rightarrow$ need a RefreshMasks operation.
- Secure multiplication: product of 2 degree d polynomials ⇒ polynomial of degree 2d

Introduction 00	Description of the scheme	Complexity analysis 00	Security analysis 0000	Conclusion
RefreshMasks operation				

- Derived from [Ben-OrGoldwasserWigderson88]
 - Sharing each share
 - Reconstructing original value

Algorithm 1 RefreshMasks

INPUT: Shared representation of b, $(\alpha_i, y_i)_{i=0..d}$, chosen $(x_i)_{i=0..d}$, t such that $\alpha_i = x_i^{2^t}$ OUTPUT: Shared representation of b, $(x_i, y_i')_{i=0..d}$

1. for
$$i = 0$$
 to d do
2. $\beta'_i \leftarrow \beta^{2^t}_i$
3. Share y_i in $(x_j, z_{i_j})_{j=0..d}$
4. for $i = 0$ to d do
5. $(x_i, y'_i) \leftarrow \left(x_i, \sum_{j=0}^d \beta'_j \cdot z_{j_i}\right)$
6. return $(x_i, y'_i)_{i=0, d}$

Introduction 00	Description of the scheme	Complexity analysis 00	Security analysis 0000	Conclusion
Masking	the field multipli	cation		

- Two possibilities:
 - Adapt SMC algorithm of [Ben-OrGoldwasserWigderson88]¹ ⇒ huge complexity
 - Provide a new algorithm exploiting the SCA context
 - \Rightarrow loss of known security proof

¹see full version at http://eprint.iacr.org/2011/516.pdf

Introduction 00	Description of the scheme	Complexity analysis 00	Security analysis	Conclusion
Masking	the field multipli	cation		

- Two possibilities:
 - Adapt SMC algorithm of [Ben-OrGoldwasserWigderson88]¹ ⇒ huge complexity
 - Provide a new algorithm exploiting the SCA context \Rightarrow loss of known security proof \Rightarrow our choice.
- Idea : truncate the degree 2d polynomial to degree d

¹see full version at http://eprint.iacr.org/2011/516.pdf

Introduction	Description of the scheme	Complexity analysis	Security analysis	Conclusion
00	○○○○○○○○○	00	0000	
Masking	the field multipli	cation		

 Let β_{i,k}(x) be defined as: • $\beta_j(x) = \prod_{l=0, l\neq j}^d \frac{x-x_l}{x_j-x_l}.$ • $\beta_i(x) \cdot \beta_k(x) = \alpha_{2d} x^{2d} + \dots + \alpha_d x^d + \dots + \alpha_1 x + \alpha_0$ • Then $\beta_{i,k}(x) = \beta_{k,i}(x) = \alpha_d x^d + \dots + \alpha_1 x + \alpha_0$. • $P(x) = \sum \sum y_j \cdot u_k \cdot \beta_{j,k}(x)$ verifies: $i=0 \ k=0$ • degree(P) = d• $P(0) = \mathbf{b} \cdot \mathbf{u}$ • $\forall x \in \{x_i\}_{i=0..d}, P(x_i) = y'_i$

Introduction	Description of the scheme	Complexity analysis	Security analysis	Conclusion
00	○○○○○○●○	00	0000	
Masking	the field multipli	cation		

Algorithm 2 Share multiplication SecMult

INPUT: Shared representation of b, $(x_i, y_i)_{i=0..d}$ and u, $(x_i, u_i)_{i=0..d}$ OUTPUT: Shares $(x_i, y'_i)_{i=0..d}$ representing the product of b and u

1. for
$$j = 0$$
 to d do
2. for $k = 0$ to d do
3. $z_{j,k} \leftarrow y_j \cdot u_k$
4. for $i = 0$ to d do
5. $(x_i, y'_i) \leftarrow \left(x_i, \left(\sum_{j=1}^d \sum_{0 \le k < j} (z_{j,k} \oplus z_{k,j}) \cdot \beta_{j,k}(x_i)\right) + \sum_{j=0}^d z_{j,j} \cdot \beta_{j,j}(x_i)\right)$
6. return $(x_i, y'_i)_{i=0..d}$

13/26

Introduction 00	Description of the scheme ○○○○○○○●	Complexity analysis	Security analysis 0000	Conclusion
Intuition	of security			

- Intuitively we have
 - One needs at least d + 1 shares to define a polynomial of degree d,
 - $\beta_{j,k}(x_i)$ is independent of any secret,
 - $y_j \cdot u_k$ does not leak more information on b (resp. u) than the knowledge of y_j (resp. u_k),
- No easy security proof for SecMult a order d: open work.

Introduction 00	Description of the scheme	Complexity analysis	Security analysis	Conclusion
Outline				

Introduction

- Context Shamir's secret sharing scheme
- 2 Description of the scheme

Core Idea Masking AES: SSS masking scheme

- Complexity analysis
 Complexity of operations
 Overall complexity
- 4 Security analysis

Information Theoretic Analysis Higher-Order DPA Evaluation Attack simulations

Introduction 00	Description of the scheme	Complexity analysis ●○	Security analysis 0000	Conclusion
Complexi	ty of the inversion	on		

Table: Complexity of inversion algorithms

order	XORs	multiplications	^ 2 ^j	Rand. bytes	RAM (bytes)
O1-SSS	36	54	14	6	20
O2-SSS	150	165	21	18	33
Od-SSS	$7d^3 + 18d^2 + 11d$	$5d^3 + 18d^2 + 22d + 9$	7(d+1)	$3d^2 + 3d$	$d^2 + 10d + 9$
O1-Bool.	20	16	6	6	7
O2-Bool.	56	36	9	16	12
O3-Bool.	108	64	12	20	18
O4-Bool.	176	100	15	48	25
Od-Bool.	$7d^2 + 12d$	$4d^2 + 8d + 4$	3(d+1)	$2d^2 + 4d$	$\frac{1}{2}d^2 + \frac{7}{2}d + 3$

Introduction 00	Description of the scheme	Complexity analysis ○●	Security analysis 0000	Conclusion
Overall c	complexity			

Log/alog tables based multiplication

Table: Complexity of cipher implementations

Masking	XORs/ANDs	Table look-ups	Random bits	RAM (bits)	ROM (bits)
10 boolean	17640	16144	16896	312	6128
20 boolean	37800	32272	46080	352	6128
30 boolean	65640	54160	87552	400	6128
1 <i>0</i> SSS	31760	37296	16240	400	6128

Introduction 00	Description of the scheme	Complexity analysis ○●	Security analysis 0000	Conclusion
Overall c	complexity			

Log/alog tables based multiplication

Table: Complexity of cipher implementations

Masking	XORs/ANDs	Table look-ups	Random bits	RAM (bits)	ROM (bits)
10 boolean	17640	16144	16896	312	6128
20 boolean	37800	32272	46080	352	6128
30 boolean	65640	54160	87552	400	6128
1 <i>0</i> SSS	31760	37296	16240	400	6128

Introduction 00	Description of the scheme	Complexity analysis	Security analysis	Conclusion
Outline				
(roduction context hamir's secret sharing	scheme		
0	scription of the schem Core Idea Aasking AES: SSS mas			
0	mplexity analysis complexity of operation Overall complexity	าร		
li	curity analysis nformation Theoretic A ligher-Order DPA Eva	2		

Attack simulations

Introduction 00	Description of the scheme	Complexity analysis 00	Security analysis	Conclusion
Leakage	model			

• Each sensitive variable Z manipulated as

$$U_i = (x_i, P(x_i))_{i=0..d}$$

where P(0) = Z

Hamming weight model with additional Gaussian noise

Introduction 00	Description of the scheme	Complexity analysis 00	Security analysis	Conclusion
Leakage	model			

• Each sensitive variable Z manipulated as

$$U_i = (x_i, P(x_i))_{i=0..d}$$

where P(0) = Z

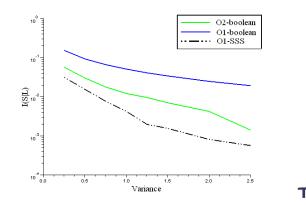
- Hamming weight model with additional Gaussian noise
- No *d*-th order leakage thanks to Shamir's sharing scheme

Introduction 00	Description of the scheme	Complexity analysis	Security analysis	Conclusion
Leakage	model			

Each sensitive variable Z manipulated as

$$U_i = (x_i, P(x_i))_{i=0..d}$$

where P(0) = Z


- Hamming weight model with additional Gaussian noise
- No d-th order leakage thanks to Shamir's sharing scheme
- What about (d + 1)-th order leakage ?

- Follows the approach of [StandaertMalkingYung09]
 - Mutual information evaluation

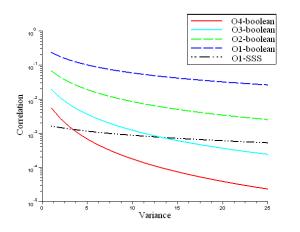
Figure: Mutual Information values with respect to σ^2 (logarithmic scale).

Optimal correlation [ProuffRivainBévan09]:

$$\rho = \sqrt{\frac{\mathsf{Var}\left[\mathsf{E}\left[\prod_{i}\overline{L}_{i}|Z=z\right]\right]}{\mathsf{Var}\left[\prod_{i}\overline{L}_{i}\right]}}$$

Boolean masking [RivainProuffDoget09]:

$$\rho_{\text{bool}} = (-1)^d \frac{\sqrt{n}}{(n+4\sigma^2)^{\frac{d+1}{2}}}$$


• 10-SSS masking:

$$\rho_{\text{SSS}} = \sqrt{\frac{n^3 \cdot (2^{n+1} - 4^n - 1)}{\alpha_2 \cdot \sigma^4 + \alpha_1 \cdot \sigma^2 + \alpha_0}}$$

Figure: Correlation values with respect to σ^2 (logarithmic scale).

Introduction 00	Description of the scheme	Complexity analysis 00	Security analysis ○○○●	Conclusion
Attack sin	nulations			

Table: Number of leakage measurements for a 90% success rate.

$Attack \ \setminus \ SNR$	$+\infty$	1	1/2	1/5	1/10
Attack	s against Bo	olean Masl	king		
20-DPA on 10 Boolean Masking	150	500	1500	6000	20 000
20-MIA on 10 Boolean Masking	100	5000	15 000	50 000	160 000
30-DPA on 20 Boolean Masking	1500	9000	35 000	280 000	$> 10^{6}$
30-MIA on 20 Boolean Masking	160	160 000	650 000	$> 10^{6}$	$> 10^{6}$
Atta	cks against S	SS Maskir	g		
20-DPA on 10 SSS Masking	$> 10^{6}$	$> 10^{6}$	$> 10^{6}$	$> 10^{6}$	$> 10^{6}$
20-MIA on 10 SSS Masking	500 000	$> 10^{6}$	$> 10^{6}$	$> 10^{6}$	$> 10^{6}$
30-DPA on 20 SSS Masking	$> 10^{6}$	$> 10^{6}$	$> 10^{6}$	$> 10^{6}$	$> 10^{6}$
30-MIA on 20 SSS Masking	$> 10^{6}$	$> 10^{6}$	$> 10^{6}$	$> 10^{6}$	> 10 ⁶

Introduction 00	Description of the scheme	Complexity analysis 00	Security analysis 0000	Conclusion
Outline				
(roduction Context Shamir's secret sharing	scheme		
(scription of the schem Core Idea Aasking AES: SSS ma			
(mplexity analysis Complexity of operation Overall complexity	ns		
	curity analysis nformation Theoretic / ligher-Order DPA Eva	5		

- Attack simulations
- 5 Conclusion

Introduction 00	Description of the scheme	Complexity analysis	Security analysis 0000	Conclusion
Conclusi	on			

- New alternative to higher order boolean masking
- Good complexity-security trade-off for high level security:
 - 10-SSS complexity pprox 20 boolean
 - 10-SSS security pprox 30 boolean
- Open work:
 - Security proof for SecMult
 - Try other secret sharing as masking scheme

Introduction 00	Description of the scheme	Complexity analysis 00	Security analysis 0000	Conclusion
End of the talk				

Thank you for your attention

Questions / comments ?

